
Runtime Analysis General Yankee Swap

Vanilla Yankee Swap

Paula
Navarrete

Efficient Yankee Swap for Fairly Allocating Courses to Students
Fair & Explainable Decision-Making (FED) Lab Yair

Zick
Cyrus

Cousins
Vignesh

Viswanathan

Yankee Swap with Duplicate Items

* Our algorithm considers updating the exchange graph rather than recomputing it from scratch in every iteration,
leading to a significant reduction in running time.

ALGORITHM : Yankee Swap

Input : Set of students 𝑁, set of classes 𝑀, and valuation functions 𝑣! !∈#
Output : A clean allocation 𝑋
Initialize exchange graph 𝐺
𝑋 = 𝑋$, 𝑋, … , 𝑋% ← (𝑀, ∅,… , ∅) // All seats initially in 𝑋$
𝑈 ← 𝑁
while 𝑈 ≠ ∅ do

𝑖 ← argmax−𝑣& (𝑋&) // Pick lowest utility student
find shortest path from student 𝑖 to class 𝑗 ∈ 𝑋$
if a path exists then

update 𝑋
𝑋$ 𝑗 ← 𝑋$ 𝑗 − 1 // Reduce class seat by 1
generate/update 𝐺∗

else
𝑈 ← 𝑁 ∖ 𝑖 // Remove student

end
end

We implemented the Yankee Swap allocation algorithm considering students with binary submodular valuation
functions (Viswanathan and Zick , 2023a), and incorporated duplicity of items.

What happens if we consider students with different weights 𝑤!? General Yankee Swap is a generalized version of
the algorithm that allows maximizing any justice criteria (Viswanathan and Zick, 2023b). Vanilla Yankee Swap is
guaranteed to be EF-X. What is the performance in terms of enviousness for the general version?

Ite
m

s

EF count EF-1 count EF-X count

En

vi
ou

s
St

ud
en

ts

YS RR SPIRE

USW* 4.9 4.6 4.5

Nash Zeros* 0 0.2 4.4

NSW* 4.9 4.5 4.2

EF 0 16.4 1985

EF-X* 0 0 197

EF-1 0 16 1975

We run Yankee Swap (YS) with 𝑛 = 107
courses from the UMass CS schedule, and
𝑚 = 1000 randomly generated students.
We compare YS against the current course
allocator (SPIRE) and Round Robin (RR).

* YS is guaranteed to maximize USW and NSW,
and is also envy free up to any item (EF-X)

Results show average values for output
allocations obtained for 5 different seeds.

Generalized YS only alters the
order in which we pick the
students. Instead of maximizing
− 𝑣!(𝑋!), we might maximize:

Weighted Leximin:

−
𝑣!(𝑋!)
𝑤!

Weighted Nash:

1 + "
#! $!

%!
if 𝑣!(𝑋!)>0,

a large 𝐶 otherwise.

References
Viswanathan, V., & Zick, Y. (2023a). Yankee swap: a fast and simple fair allocation mechanism for matroid rank valuations. In Proceedings of the 22nd International Conference on Autonomous Agents and Multi-Agent Systems (AAMAS).
Viswanathan, V., & Zick, Y. (2023b). A general framework for fair allocation under matroid rank valuations. In Proceedings of the 24th ACM Conference on Economics and Computation (pp. 1129-1152).

YS

Individual Items 𝑂(𝑆& 𝑛 + 𝜏 𝑛 + 𝑆)
Recomputing graph 𝑂(𝑚(𝑛 + 𝑆)(𝑛 +𝑚𝑆'($𝜏))

Updating graph 𝑂((𝑛 + 𝑆)(ln 𝑛 +𝑚& + 𝑝𝛾𝐶'($(𝑆'($ + 𝜏))

𝜏: maximum time to compute 𝑣!(𝑋!)
𝐶'($: student class limit
𝛾: Max number of desired classes
𝑆 = ∑)∈' 𝑆), 𝑆) are the seats in class 𝑗
𝑆'($ = max

)
𝑆)

p = length of the path

Updating instead of recomputing the exchange graph is empirically faster!

pnavarretedi@umass.edu

Motivation: Most of the time, the algorithm spends on updating the exchange graph, can we do better?

