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Abstract

In large universities, the task of assigning classes to thousands of students while con-
sidering their preferences, along with course schedules and capacities, presents a significant
challenge. Ensuring the effectiveness and fairness of course allocation mechanisms is crucial
to guaranteeing student satisfaction and optimizing resource utilization. We address this
problem from an economic perspective, using formal justice criteria to evaluate different
algorithmic frameworks. We develop software for generating synthetic students with binary
preferences over courses represented by linear inequality constraints, and implement four
allocation algorithms: the SPIRE algorithm used by UMass Amherst; Round Robin; an
Integer Linear Program; and the Yankee Swap algorithm, a flexible approach that offers
significant fairness guarantees. We propose improvements to the Yankee Swap framework
to handle scenarios with item multiplicities. Through experimentation with the Fall 2024
Computer Science course schedule at UMass Amherst, we evaluate each algorithm’s per-
formance relative to standard justice criteria, providing insights into fair course allocation
in large university settings.

1 Introduction

Consider the problem of assigning classes to students in a large, public university. Due to the
sheer scale of the problem (thousands of students, thousands of courses), universities often
use automated systems that (a) collect student preferences and (b) assign students to classes
based on their eligibility/preferences/priority. The challenge universities face is thus to ensure
that their course allocation systems are fast, effective and satisfy certain design criteria. For
example, a course allocation system should ensure allocative efficiency: ensuring that classes
are assigned to students who actually want them; such a system should also be fair to students,
ensuring that individual students are offered equal access to classes they want. This task is
crucial as it guarantees student satisfaction, facilitates timely graduation by enabling students
to fulfill their requirements, and optimizes resource utilization by maximizing the occupancy
of class seats.

We approach this problem from an economic perspective. We use formal justice criteria
[13, 15] to evaluate our algorithmic frameworks. We utilize the Yankee Swap framework [17,
16]: a simple and flexible framework that achieves many of these concepts under certain
assumptions, namely that student utilities are given by binary submodular functions. Indeed,
most fair allocation algorithms assume a certain structure on agent preferences (with the
notable exception of Lipton et al. [12], which produces an approximately envy-free allocation
for general utilities). Thus, there remains a gap between theory and practice: how do modern
fair allocation algorithms perform in realistic settings? In the present work, we attempt to
answer this question in the context of course allocation. We perform numerous experiments
on both standard and state of the art allocation algorithms to compare performance in terms
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of different efficiency and justice criteria. We also introduce an improvement to one allocation
algorithm that results in a significant improvement in its runtime.

1.1 Our Contributions

Our main contribution is the development of software for generating synthetic students based
on a generic course schedule and simple statistics, and the implementation of four allocation
algorithms (Section 2.5): Round Robin (a classical scheduling algorithm), SPIRE (the algo-
rithm used at UMass Amherst), an Integer Linear Program that finds the optimal solution
maximizing utilitarian social welfare, and Yankee Swap [16] (a state of the art fair allocation
algorithm), to solve the course allocation problem. We also discuss improvements to the Yan-
kee Swap framework, naturally arising from its implementation in a setting where items have
multiplicities and agents can only desire a limited number of items (Section 3). Finally, we
test each algorithm against the Fall 2024 UMass Amherst Computer Science course schedule,
and measure their performance relative to a number of standard justice criteria (Section 4).

2 Fair Course Allocation

2.1 Related Work

Several works study the course allocation problem. Budish et al. [6] introduced the Course
Match algorithm, which uses a massive parallel heuristic search to approximate a competitive
equilibrium in course allocations. While demonstrating effectiveness in fairness and efficiency,
Course Match requires students to articulate highly complex preferences. Diebold et al. [10]
explored course allocation through stable matching mechanisms, particularly focusing on the
Gale-Shapley student optimal stable mechanism (SOSM) and the efficiency-adjusted deferred
acceptance mechanism (EADAM). While SOSM prioritizes stability and strategy-proofness, it
may fall short in efficiency. EADAM mitigates this drawback by recuperating efficiency losses
from SOSM at the expense of strategy-proofness. Biswas et al. [2] proposed an algorithmic
approach to tackle course enrollment challenges, especially in scenarios where resources conflict,
represented through conflict graphs. Furthermore, Biswas et al. [3] investigated fair allocation
of indivisible items amidst conflicting pairs, represented by interval graphs, and provided a
course allocation algorithm under identical utilities, implying that, for any course, all students
have the same utility.

2.2 Preliminaries

We let N0 be the set of non-negative integers. Let N = {1, 2, ..., n} be a set of agents and
G = {g1, g2, ..., gm} be a set of item types. Each item type g ∈ G has a limited number of
identical copies qg; we write q⃗ = (qg1 , ..., qgm). An allocation A is a partition of items. More
formally, A = (A0, A1, . . . , An) is a set of non-overlapping bundles, where each agent i is
assigned a bundle Ai, and A0 denotes the set of unassigned items. It is easier to think of A as
a matrix. Since an agent may own multiple copies of a single item, Ai is a vector in Nm

0 that
represents agent i’s bundle under allocation A, where Ai,g is the number of copies of item g
owned by agent i. Thus, an allocation is valid if for any item g ∈ G, A0,g +

∑n
i=1Ai,g = qg:

the number of unassigned copies of g – A0,g – plus the number of copies assigned to all agents
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equals exactly qg. For ease of readability, for an allocation A and an item type g, we say that
g ∈ Ai if Ai,g > 0.

Each agent has a valuation function vi : Nm
0 → N0 which depends only on the bundle Ai

allocated to them. We define the marginal utility of agent i from receiving an additional copy
of the item type g as

∆i(Ai, g) ≜ vi(Ai + 1g)− vi(Ai).

Here, 1g ∈ {0, 1}m is the vector with 0s everywhere except for a 1 in the g-th coordinate.
We say that vi is a binary function if for any allocation Ai and any item type g,

∆i(Ai, g) ∈ {0, 1}.

Given two bundles Ai, Bi ∈ Nm
0 , we say Ai ⪯ Bi if for all g ∈ G, Ai,g ≤ Bi,g. We say that vi

is a submodular function if for any two bundles Ai, Bi ∈ Nm
0 such that Ai ⪯ Bi, and for any

item type g,
∆i(Ai, g) ≥ ∆i(Bi, g).

Intuitively, the more items an agent i owns, the less marginal benefit they receive from addi-
tional items.

2.3 Justice Criteria

In order to compare two different allocations, we define the following metrics. The Utilitarian
Social Welfare (USW) sums the total welfare of agents:

USW(A) =
1

n

∑
i∈N

vi(Ai). (1)

Let N>0(A) be the set of students that have a positive utility under allocation A, defined as
N>0(A) = {i ∈ N |vi(Ai) > 0}. The Nash Social Welfare (NSW) [7] first minimizes the number
of agents with zero utility (i.e., maximizes |N>0(A)|), and then takes the product of utilities
for all agents with positive utility under A:

NSW(A) =
1

n

∏
i∈N>0(A)

vi(Ai). (2)

Given an allocation A, we say that agent i envies agent j [11] if vi(Ai) < vi(Aj). An
allocation is envy-free (EF) if no agent envies another. Envy-free allocations are not guaranteed
to exist (consider a setting with two agents and one single item); this gave rise to a the canonical
notion of envy-freeness up to one item (EF-1) [5, 12]. An allocation A is said to be EF-1 if
for any two agents i and j, if i envies j, then there exists some item g ∈ Aj such that
vi(Ai) ≥ vi(Aj − 1g).

2.4 Valuation Function

Thus far we have remained agnostic to the valuation function vi that defines the preferences of
agent i ∈ N . We introduce a valuation function defined by linear inequality constraints, which
we employ in our implementation.
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2.4.1 Linear inequality constraints

All the allocation algorithms implemented (later described in Section 2.5) rely on having ac-
cess to the valuation function. Having a pre-computed oracle access to this valuation function
means that we would need to store the utility value for each student i ∈ N from any potential
bundle Ai. However, keeping track of the utility each student derives from every possible com-
bination of items becomes intractable when dealing with thousands of students and hundreds
of classes. To address this challenge, we utilize linear inequality constraints to represent agent
preferences. These constraints can be computed as needed at a relatively low cost, offering a
more manageable approach to modeling student preferences. Such a constraint has the form

ZiAi ≤ b⃗i, (3)

where Zi is an n×m constraint matrix, Ai is an m× 1 vector of item multiplicities, and b⃗i is
an n× 1 limit vector. For x⃗ ∈ Nm

0 , we write x⃗ ⪯ Ai whenever xg ≤ Ai,g for all g ∈ G. We have

vi(Ai) = max{|x⃗| : Zix⃗ ≤ b⃗i, x⃗ ⪯ Ai}, (4)

where |x⃗| denotes the 1-norm of x⃗.

2.4.2 Expressiveness of linear inequality constraints

Although linear inequality constraints do not always describe binary submodular valuation
functions, every binary submodular value function can be represented by a set of linear in-
equality constraints. The following argument leverages the fact that every binary submodular
valuation function is the rank function of some finite matroid [14]. We make the argument
in the context of goods having multiplicity one, but the argument naturally extends to goods
with multiplicities.

Let M = (E, I) be any finite matroid with |E| = m. Let C be the set of circuits of M . A
circuit is the smallest dependent set containing a set independent in M , i.e.,, for all C ∈ C,
there is some c ∈ C such that C \ {c} is an independent set. Being a finite matroid, we
assume that it is possible to order both the elements e1, e2, . . . , em of E as well as the circuits
C1, C2, . . . , Cn of C. The rank of the circuit Ci is the size of the largest independent set I ⊆ Ci,
i.e., ri = |Ci| − 1.

We define an n×m constraint matrix Z as follows. The i-th row of Z, z⃗i, is an indicator
vector for circuit Ci: zij = 0 unless ej ∈ Ci, in which case zij = 1. Let X ⊆ E be an arbitrary
subset of elements. We similarly define the length m indicator column vector for X by x⃗ such
that xj = 0 if ej /∈ X and xj = 1 otherwise. By construction, for every i ∈ N and X ⊆ E,

we have that z⃗ix⃗ = |Ci ∩X|. Finally, we define an n dimensional constraint vector b⃗ such that
bi = ri.

Theorem 1. For arbitrary X ⊆ E and corresponding indicator vector x⃗, Zx⃗ ≤ b⃗ iff X ∈ I.

Proof. Suppose that X ∈ I and consider any row z⃗i. By construction we have z⃗ix⃗ = |Ci ∩X|.
On the other hand, since X is independent by assumption, and every subset of an independent
set is itself independent, it must be the case that Ci ∩X ∈ I. It follows then that |Ci ∩X| ≤
max{|I| : I ∈ I, I ⊆ Ci} = ri. Thus, z⃗ix⃗ ≤ bi.

Next, suppose that X ̸∈ I. Since Z possesses a row for every circuit in C, and every
dependent set contains a circuit, there must exist some row z⃗i such that Ci ⊆ X. Thus,
z⃗ix⃗ = |Ci ∩X| = |Ci| = ri + 1 and so z⃗ix⃗ > bi.
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2.5 Allocation Algorithms

In the course allocation context, an allocation algorithm is an algorithm that takes as input
a set or courses G and a set of students N with certain preferences over these courses. The
preferences of student i are encoded by a valuation function vi : 2

G → R, where for every bundle
of classes S ⊆ G, vi(S) is the utility that student i derives from receiving the set of classes
S. An allocation algorithm receives as input the students’ preferences, and outputs a valid
allocation A of the courses to the students. We consider four different allocation algorithms,
SPIRE, Round Robin, an integer linear program, and Yankee Swap.

SPIRE: The SPIRE algorithm is the course allocation algorithm currently employed by
UMass Amherst to enroll students in courses. In this system, student enrollment operates
on a first-come, first-served basis, following a sequential pattern: the first student to access
the platform enrolls in all their desired courses. Subsequently, the following students enroll
in all desired courses that have available seats left. More formally, the algorithm works as
follows. Initially, students start with an empty bundle and all course seats are available. The
first student picks a bundle of classes that maximizes their utility and course capacities are
updated accordingly. The second student does the same, considering these updated capacities.
The algorithm terminates once all students picked classes. We assume that students pick clean
bundles: a bundle Ai ⊆ G of classes is clean [1] with respect to agent i ∈ N if for any item
g ∈ Ai, vi(Ai \ g) < vi(Ai), i.e., removing any item from i’s bundle will strictly reduce their
utility. In other words, we assume that on their turn, students do not enroll in classes that they
do not want to enroll to, or that conflict with one another. The SPIRE algorithm significantly
favors students who access the platform early, while those who log in later, face a considerable
disadvantage in securing desired classes. In reality, the algorithm allows students to “hoard”
courses, i.e., exacerbating the scarcity of available spots for subsequent students.

Round Robin: The well known Round Robin algorithm [4] bears resemblance to the SPIRE
algorithm in its sequential nature. However, unlike SPIRE, Round Robin allows students to
select only one course at a time, employing multiple rounds instead of a single one. In this
algorithm, agents begin with an empty bundle and proceed through rounds, selecting one item
from the pool of unallocated goods in each round. The first student enrolls in one of their
desired courses; course capacities are updated accordingly. The second student does the same,
considering these updated capacities. Students keep enrolling in one course at the time in
rounds, until no student can strictly increase their utility by enrolling in any available class.

ILP: we encode agent preferences using linear inequality constraints given by Equation 4.
Allocation by integer linear program (ILP) finds an allocation A that maximizes the utilitarian
social welfare, subject to the constraints. Since both the objective and constraints are linear,
the ILP is guaranteed to return the optimal integer allocation. In particular we solve the
following ILP.

Maximize:

USW(A) =
1

n

∑
i∈N

vi(Ai). (5)
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Subject to: 
Z1

Z2

. . .

Zn


 A1

...
An

 ≤
 b⃗1

...

b⃗n

 . (6)

Yankee Swap: the Yankee Swap algorithm [17] is similar to the well known Round Robin
algorithm: agents sequentially pick items in rounds. However, unlike the Round Robin algo-
rithm, agents are allowed to steal items from other agents if they do not like any of the available
unassigned items. In each round, a student can either enroll in a course with available seats or
steal a seat from another student; however, they can only do this if the student they are steal-
ing from can recover their utility by either enrolling in another desirable course with available
spots, or stealing a seat from a third agent, and so forth. The algorithm terminates when no
student can further benefit from enrolling in courses with available seats, or when students
are solely interested in stealing seats from students who cannot recover their utility. When
agents have binary submodular valuations, Yankee Swap offers several theoretical guarantees:
it outputs a leximin allocation, which also maximizes USW and returns an EF-1 allocation (see
Section 2.3). In addition, Yankee Swap is truthful : no agent can increase their utility by mis-
reporting their preferences, e.g. say that they want to enroll in an undesirable class, or say
that they do not want to enroll in a desirable class.

The main computational hurdle in implementing the Yankee Swap algorithm is computing the
item exchange graph (see Section 3.1 for more details): this is a graph over item types, where
there is a directed edge from item g to item g′ if the agent who owns item g can retain their
current utility by exchanging g for g′. This graph is used to compute the transfer paths utilized
in the Yankee Swap algorithm, and is the most computationally intensive aspect of its runtime.

We next describe how we exploit the underlying problem structure in order to derive additional
improvements to the Yankee Swap algorithm.

3 Yankee Swap with Multiplicity of Items

The original Yankee Swap algorithm [17] assumes that there is no multiplicity of items: each
item type g has only one copy, i.e., qg = 1 for all g ∈ G. When items have multiple identical
copies, such as seats in a class in the course allocation problem, considering each copy of an
item as an individual good becomes highly inefficient: the item exchange graph becomes a data
structure whose size scales by the number of course seats rather than the number of courses
(which is typically significantly smaller). We propose a modified version of the Yankee Swap
algorithm that allows multiplicity of items.

3.1 Key Concepts

Given an allocation A, the exchange graph G(A) is a directed graph over the set of items G.
There is an edge from an item g ∈ Ai to another item g′ ∈ G if vi(Ai) = vi(Ai − 1g + 1g′). In
other words, there is an edge from g to g′ if the agent who owns g under A can replace it with
g′ without reducing their utility. Note that if no agent owns item g ∈ G (i.e., g ∈ A0), then
there are no outgoing edges from g.
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Figure 1: Consider a small instance with 3 courses — green, blue and red — and two students
— S1 and S2 — who have preferences over the courses. Consider the allocation in which S1 is
enrolled in green and S2 is enrolled in blue. The exchange graph (a) shows the exchange graph
representation of this allocation without multiplicity of items, while exchange graph (b) shows
the same representation considering item multiplicity.

The Yankee Swap algorithm works as follows. Initially, all agents are assigned empty
bundles and all items are unassigned, i.e., the initial allocation A is such that A0,g = 1 and
Ai,g = 0 for all item types g ∈ G and agents i ∈ N . At each round, we pick an agent i according
to some criterion (say, the agent with the lowest utility). Let Fi(A) = {g ∈ G : ∆i(Ai, g) = 1}
be the set of items that offer agent i a marginal benefit of 1 given their current bundle. We
introduce a dummy node i and a dummy node t to the exchange graph. We add a directed edge
from i to every item in Fi(A), and a directed edge from each item g ∈ A0 to t. Then, we search
for a shortest path from i to t in the resulting graph. Note that such a path (i, g0, g1, . . . , gk, t)
corresponds to agent i taking item g0, and the agent who owns item gh replaces it with item
gh+1, until we reach the unassigned item gk, which is now assigned to the last agent in the
path. If there is no such path, that means that we cannot increase agent i’s utility without
reducing another agent’s utility. At this stage, agent i is kicked out of the game. We repeat
this process until there are no agents left playing.

3.2 The Algorithm

Consider the example shown in Figure 1. We have three courses with limited seats (Capacity)
and two students with preferences over these courses. We assume that there are no course
conflicts. Consider the allocation in which student S1 is enrolled in the first course, and
student S2 is enrolled in the second one. Since Yankee Swap considers a unique copy per item,
to represent the corresponding exchange graph we need to create one node per seat for each
course. Each student will own a single seat in a course — a single node in the graph; however,
since they are indifferent to which seat they get in a course they would like to add to their
bundle, these nodes will have outgoing edges to all the copies of those courses, as shown in
version (a) of the exchange graph in Figure 1. As the size of the instance grows, considering
thousands of students with complex preferences and courses hundreds of available seats, this
representation becomes intractable. We simplify this representation by considering a single
node per course (item type), as shown in version (b) of the exchange graph in Figure 1.

We propose a modified version of the Yankee Swap algorithm that allows items to have
multiple identical copies, i.e., qg ≥ 1 for all g ∈ G. The algorithm is largely the same, but some
key aspects are redefined. Since items have multiple copies, they have multiple owners, which
requires a redefinition of the exchange graph. The exchange graph G is now a directed graph
over the set of items G, in which there is an edge of the form (g, g′) if there exists an agent i
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such that g ∈ Ai and vi(Ai) = vi(Ai − 1g + 1g′), i.e., if there exists any agent in possession of
g willing to exchange it for g′.

The definition of the transfer path remains the same, however its execution is trickier. Since
item type g might have multiple owners, the existence of an edge (g, g′) might be because of a
single or possibly multiple owners willing to exchange a copy of g for a copy of g′. Thus, once
we find a transfer path, it is not trivial to identify the agents involved in the transfer path,
which is crucial to execute the path and update the allocation. To tackle this, we define a
responsible agents tuple R of dimension m ×m to keep track of the set of agents responsible
for each of the edges. Here, Rg,g′ is the set of agents that are in possession of item of type
g ∈ G and are willing to exchange it for an item of type g′ ∈ G:

Rg,g′ = {i ∈ N : Ai,g > 0 ∧ (vi(Ai) = vi(Ai − 1g + 1g′))}.

In other words, Rg,g′ is the set of agents responsible for an existing edge between nodes g
and g′ in the exchange graph. Note that Rg,g′ = ∅ if and only if there is no edge from g to g′

in G: there is no agent in possession of a g type item willing to exchange it for a g′ type item.
Initially, Rg,g′ = ∅ for every g, g′ ∈ G since no items have been allocated.

We define Di = {g ∈ G|vi(1g) = 1} as the set of agent i’s desired items. Since agents have
binary submodular valuations over the items, this set includes all items that could possibly
contribute a positive marginal contribution to agent i under any allocation A. This observation
implies that Fi(A) ⊆ Di under any allocation A. We use the set Di instead of the originally
defined set Fi(A) (see 3) despite the possibility of Fi(A) being smaller. This preference arises
because maintaining Di is more cost-effective. Given that an agent’s desired set of items is
typically small and can be pre-computed, Di offers efficiency compared to Fi(A), which requires
calls to the valuation function in each iteration.

Algorithm 1 Yankee Swap with multiplicity of items

Require: A set of agents N , a set of item types G with q⃗ copies of each type, and access to
valuation functions {vi}i∈N

Ensure: A valid allocation A
1: A = (A0, A1, ..., An)← (q⃗, ∅, ...∅)
2: R =

((
Rg,g′

)
g∈G

)
g′∈G ← (∅, ..., ∅)

3: Construct graph G with one node for each item type g ∈ G
4: U ← N
5: while U ̸= ∅ do
6: Let i ∈ argminj∈N vj(Aj)
7: Add source node s to G with an edge to all nodes g ∈ G such that ∆i(Ai, g) > 0
8: Check if there is a path P = (s, g0, ..., gk) where gk ∈ A0

9: if a path exists then
10: A, I ←update allocation(A,P,R)
11: G, R← update exchange graph(A,G, P, I, R)
12: else
13: U ← U \ {i}
14: return A

Algorithm 1 is a modified version of the Yankee Swap algorithm [17] that allows item
multiplicity. Note that the algorithm keeps the same structure as the original algorithm.
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However, two subroutines, update allocation and update exchange graph are modified (see
Algorithms 2 and 3 respectively).

Algorithm 2 update allocation(A,P,R)

Require: A feasible allocation A, a transfer path P , an edge tuple R
Ensure: An updated allocation A, a list I with involved agents in the path
1: I1 ← i
2: Ai ← Ai + 1g0

3: for each pair (g, g′) in P do
4: Let j ∈ Rg,g′

5: Il+1 ← j
6: Aj ← Aj − 1g + 1g′

7: A0 ← A0 − 1gk
8: I ←

(
Ij
)n
j=1

9: return A, I

3.3 Analysis

Let q =
∑

g∈G qg be the total number of copies of all item types. A naive implementa-
tion of Yankee Swap, considering every copy of an item type to be a different item runs in
O((q + n)q2(n + τ)) time [17] where τ the maximum time to compute any agent’s valuation
function. This implementation considers an oracle access to the valuation function, which is
not necessarily realistic. Our implementation addresses this issue by separating the exchange
graph representation from the agents through the responsible agents tuple, avoiding unneces-
sary calls to the valuation function.

Before going over the time complexity analysis of our implementation, we define the fol-
lowing parameters. First, each agent is limited to a maximum bundle size of cmax, and can
get a positive marginal contribution from at most γ different item types: |Di| ≤ γ for all
i ∈ N . Second, we define qmax = maxg∈G qg as the maximum number of copies of any item
type. Finally, we define p as the maximum length of a transfer path. While transfer paths
could potentially be of length m, they are far shorter in practice, often consisting of no more
than two or three items swaps. Intuitively, this is because transfer paths can only be long
when there are several courses that are booked to capacity, which did not occur naturally in
our empirical evaluation.

The update allocation (Algorithm 2) and update exchange graph (Algorithm 3) sub-
routines run in O(m) and O(pγcmax(qmax + τ)). Thus, our Yankee Swap implementation runs
in O((n + q)(lnn + m2 + pγcmax(qmax + τ)) time. Assuming that the number of item copies
is large, then p ≤ m ≪ q, resulting in a considerable reduction in the number of calls to the
valuation function.

4 Experiments

We implement a general suite of tools for creating fair allocations among an arbitrary set of
goods for a set of agents having arbitrary utility functions (full access to the code base will be
available upon publication).
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Algorithm 3 update exchange graph(A,G, P, I, R)

Require: An updated allocation A, its exchange graph representation G, a transfer path P ,
a sorted tuple of involved agents I, an edge tuple R

Ensure: An updated exchange graph G and edge tuple R
1: Remove node s from G and from path P
2: for each agent j ∈ I do
3: if j exchanged g for g′ in P , then
4: for each item type h ∈ Dj do
5: if j ∈ Rg,h and Aj,g = 0 then
6: Rg,h ← Rg,h \ {j}
7: if Rg,h = ∅ then
8: Remove edge g → h from G
9: for each item type h ∈ Aj do

10: for each item type h′ ∈ Dj do
11: if j ∈ Rh,h′ then
12: if vj(Aj) > vj(Aj − 1h + 1h′) then
13: Rh,h′ ← Rh,h \ {j}
14: if Rh,h′ = ∅ then
15: Remove edge h→ h′ from G
16: else
17: if vi(Ai) ≤ vi(Ai − 1h + 1h′) then
18: Rh,h′ ← Rh,h′ ∪ {j}
19: if |Rh,h′ | = 1 then
20: Add edge h→ h′ to G
21: return G, R
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BA and BS CompSci BS Informatics MS PhD Total

1,539 154 613 297 2,603

Table 1: Distribution of students enrolled in the UMass Amherst Computer Science depart-
ment.

Undergraduate MS PhD

Number of students 1,693 613 148

Enrollment capacity 6 4 4

Preferred categories {UGRAD, 500L} {500L, 600L } {500L, 600L}
Max number of liked classes 20 15 10

Min number of liked classes 1 1 1

Table 2: Parameters used to build the students’ preferences and valuation functions.

For items, we encode their multiplicity and arbitrary features, the latter of which hold a
particular value to agents. Agents are modeled as objects that implement a valuation function,
which assigns a scalar value to every set of items. We evaluate allocations according to the
justice criteria described in Section 2.3. We implement the allocation algorithms discussed in
Section 2.5: Round Robin, SPIRE, Yankee Swap, and the ILP.

In our implementation items are courses whose features include course number, section, and
meeting time. The set of all such courses, which we called the schedule, is populated from real
course schedule data. Agents’ (students) valuation functions are defined by linear constraint
equations (see Section 2.4). Valuations are randomly generated as described in Section 4. The
allocation algorithms were then run on the schedule and student list.

We conduct our experiments using the Fall 2024 UMass Amherst Computer Science course
schedule, which comprises of 98 courses. Each course is specified by its time slot, day(s) of the
week, and section number. These details are necessary for constructing the linear constraints
in our model. Each course belongs to one of three categories: UGRAD for courses intended for
undergraduate students, 500L for advanced undergraduate and beginning graduate courses,
and 600L for advanced graduate courses.

As of 2023, the UMass Amherst Computer Science department had a total of 2,603 enrolled
students, with the distribution shown in Table 1.

Consequently, our student population for the experiments is divided into three statuses:
undergraduates, master’s students (MS), and PhD students. We assume that only half of the
PhD students enroll in classes each semester. The UMass Amherst enrollment system imposes
constraints on the number of courses students can register for, which differ for undergraduate
and graduate students. We also assume that students from different statuses have varying
preferences and constraints regarding the courses they wish to enroll in: they like courses only
from certain preferred categories, they like at least one class and have a maximum number of
courses they might be interested in. These parameters are shown in Table 2.

For example, Undergraduate students prefer courses from the UGRAD and 500L categories
and are interested in a maximum of 20 courses, i.e.,, they obtain a utility of 1 from at most 20
courses.

To model student preferences, we employ a random sampling approach. For undergrad-
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USW(A) NSW(A) Zeroes(A) Envy(A) Envy1(A)

YS 3.01 3.00 0 488.5 0

RR 3.01 2.96 0 1202.57 69.76

ILP 3.01 2.79 121.01 1879.78 1306.26

SPIRE 2.82 4.06 861.16 1135.01 1057.42

Table 3: Average values for USW, NSW, number of zeros and envy metrics of the output allocations
by the four allocation algorithms, obtained from 100 instances of randomly sampled students.

uates, we randomly determine the number of courses they are interested in (up to 20) and
then randomly select this number of courses from the UGRAD and 500L categories. For MSc
students, we randomly determine the number of courses they are interested in (up to 15) and
then randomly select this number of courses from the 500L and 600L categories. Similarly, for
PhD students, we randomly determine the number of courses they are interested in (up to 10)
and then randomly select this number of courses from the 500L and 600L categories.

Based on data provided by UMass Amherst Computer Science department administrators,
our preference model is plausible and serves primarily to illustrate the algorithm and its out-
comes. We are currently in the process of a large-scale data collection exercise among UMass
Amherst CS majors of all levels. Future experiments will be run on those real-world student
preferences.

4.1 Results

We generate 100 instances of randomly sampled students, adhering to the characteristics out-
lined in Table 2. All four allocation algorithms — Yankee Swap, Round Robin, ILP, and
SPIRE— were executed on these instances. In all three sequential algorithms — SPIRE,
Round Robin, and Yankee Swap — the course selection order remains consistent, prioritizing
PhD students for enrollment first, followed by MS students, and finally undergraduate students;
indeed, we actually implemented a more advanced version of the Yankee Swap algorithm —
General Yankee Swap [16] — that accommodates student priorities, as well as many other
adaptations.

We assess and compare the performance of these algorithms based on metrics defined in
Section 2.3. Given an allocation A, we evaluate Zeroes(A): the number of students that
receive an empty bundle under A; Envy(A) is the number of students who are envious of
another student under allocation A; and Envy1(A) is the number of students who are envious
of another student under the EF-1 definition described in section 2.3.

Table 3 presents the average values for all five metrics across allocations obtained through
the 100 simulations for each algorithm. These values, along with error bars, are depicted in
Figure 2.

As anticipated, both ILP and Yankee Swap maximize USW, together with Round Robin.
SPIRE lags slightly behind. Even though the difference in USW seems small, given the total
of 2454 students, this disparity implies approximately 466 unallocated seats under the SPIRE
algorithm. Yankee Swap and Round Robin ensure that no students receive an empty bundle
in all 100 simulations, while ILP and particularly SPIRE leave numerous students without any
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Figure 2: Average values and error bars for USW, NSW, number of zeros and envy metrics of the
output allocations by the four allocation algorithms, obtained from 100 instances of randomly
sampled students. The top row shows in cold colors the metrics we want to maximize, while
the bottom row shows in warm colors metrics we want to minimize.

items1. SPIRE ranks high on the Nash welfare (NSW) metric. This is, however, misleading: NSW
only considers students with positive utility, thus resulting in a biased assessment as there are
several students with zero utility under SPIRE. Yankee Swap outperforms the other algorithms
on the NSW metric, which indicates that its allocation balances well between social welfare and
ensuring that all agents have as high a utility as possible; this is unsurprising as Yankee Swap
outputs a leximin allocation. The ILP solution, followed by Round Robin, exhibits the most
envy. It is worth noting that regardless of Round Robin outperforming SPIRE in other metrics,
it exhibits more envy. While Yankee Swap only offers EF-1 guarantees, it yields allocations
with the fewest envious agents.

We analyze the student bundle size frequencies averaged across 100 simulations for all four
algorithms. Since bundles are clean in all implementations, a student’s bundle size is simply
their utility. The ILP algorithm prioritizes finding a feasible point that maximizes USW with no
consideration for welfare distribution. SPIRE exhibits a trend where a significant number of
students enroll in six courses, likely due to the advantageous ordering of class selection, while
also resulting in a notable proportion of students enrolling in zero courses, as indicated by the
Zeroes metric in Figure 2. In contrast, Round Robin tends to cluster students in the middle
range, enrolling them in bundles of two, three, or four courses, while Yankee Swap allocates
three courses to most students.

It is reasonable to argue that the effectiveness of the algorithms is closely tied to the
sequence in which students choose their courses, particularly for sequential algorithms, or to
the order in which they are defined, in the case of the ILP. To investigate this further, we rerun

1Through discussions with university administrators, what happens in reality is that students who sign up
late simply sign up for classes that they do not want to take.
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Figure 3: Histogram shows student bundle size frequencies (solid) and cumulative distribution
(faint) averaged across 100 simulations for all four allocation algorithms.

the allocation algorithms, varying the orders in which students select courses while maintaining
the hierarchy of PhD, MS, and undergraduate students. This analysis is conducted on a single
instance of randomly generated students, considering ten distinct orders of students.

Once again, we compute all metrics on the allocations obtained through all four algorithms
for the ten sequences. These values are depicted in Figure 4.

The outcomes remain consistent regardless of the sequence in which students enroll in
classes. SPIRE consistently under-utilizes resources by not maximizing USW, while both SPIRE
and ILP consistently leave numerous students with empty bundles. Finally, Yankee Swap
consistently produces allocations with lower envy compared to allocations obtained by other
algorithms, not only on the same sequence but also across all other sequences.

5 Discussion

In this work, we present several important steps towards a practical implementation of a
state-of-the-art allocation mechanism in a realistic domain. We discuss some theoretical im-
provements, as well as practical workarounds we had utilized in order to maximize the efficiency
of our implementation. We compare our candidate mechanism to several natural course allo-
cation mechanisms, as well as to the current mechanism (SPIRE) used by UMass Amherst.
The Yankee Swap mechanism is scalable, and outperforms the benchmarks on several standard
justice criteria. In addition, the Yankee Swap mechanism is truthful, ensuring that students
do not try and game the mechanism, a valuable property in markets without money. Thus,
we believe that it is a natural candidate to replace the current mechanism utilized by UMass
Amherst, and indeed, other large academic institutions.

We are currently in the process of collecting data on student preferences among the CS
majors in UMass Amherst. The survey is ongoing, and our methods will be reexamined on
this student data. The data will also be made public for the research community.

Our approach suffers from several natural limitations. First of all, while the Yankee Swap
algorithm can run when agents do not have binary submodular utilities, it does not offer the
same strong guarantees. Analyzing the theoretical and practical guarantees offered by the
algorithm for more general classes of valuations is an important next step (see analysis in [8, 9]
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Figure 4: Values for USW, NSW, number of zeros and envy metrics of the output allocations by
the four allocation algorithms, obtained from a single instance of randomly sampled students,
considering ten distinct sequences of students. The top row shows in cold colors the metrics we
want to maximize, while the bottom rows shows in warm colors metrics we want to minimize.

for some preliminary steps in this direction). More generally, we believe that having students
express simpler preferences is the more practical approach. Methods that elicit complex student
preferences (e.g. the CourseMatch [6] mechanism) place a significant cognitive burden on
students, and do not scale to the magnitude of a large academic institution with tens of
thousands of students. That being said, it would be valuable to analyze the distortion of
simple allocation mechanisms: if we assume that each student has a true utility given by a
valuation function vi, but we approximate it with a simpler (say, binary submodular) function
v̂i, what guarantees can we offer with respect to the true valuation vi?.

The course allocation framework offers many other interesting challenges. First, students
often have required classes in early semesters, which they must take to fulfill their degree
requirements. How does one account for these classes when computing metrics such as envy and
welfare? Secondly, the valuation functions induced by course conflict and capacity constraints
may be binary, but are not guaranteed to be submodular. Indeed, as pointed out by Biswas
et al. [3], the problem of computing fair allocations under general course conflict graphs is
computationally intractable (even when the number of agents is constant). While we recognize
that such challenges occur for arbitrary course conflict graphs, real-world course conflict graphs
are far more structured (in UMass Amherst, they are by and large a union of disjoint cliques,
which induces submodular preferences). It would be interesting to characterize course conflict
graph classes which admit efficient algorithms for computing fair course allocations. Finally,
discussions with UMass Amherst administrators indicate that students often over-enroll to
classes. This is largely due to the fact that students are not certain whether they actually like
the classes they enrolled in. Thus, they enroll to more classes than they will actually intend
to take, and simply drop them within the Add/Drop period. Analyzing this phenomenon
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theoretically and empirically is an important step for future work.
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